首页 | 本学科首页   官方微博 | 高级检索  
     


Co-synthesis of vertical graphene nanosheets and high-value gases using inductively coupled plasma enhanced chemical vapor deposition
Abstract:One-step controllable synthesis of vertical graphene nanosheets (VGs) and high-value gases was achieved using inductively coupled plasma enhanced chemical vapor deposition (ICPECVD). The basic physical properties of the ICPECVD process were revealed via electrical diagnosis and optical emission spectroscopy. The coil current and voltage increased linearly with the augmenting of injected power, and CH, C2, H2 and H were detected at a wavelength from 300 to 700 nm, implying the generation of abundant graphene-building species. The morphology and structure of solid carbon products, graphene nanosheets, were systemically characterized in terms of the variations of operating conditions, such as pressure, temperature, gas proportion, etc. The results indicated that an appropriate operating condition was indispensable for the growth process of graphene nanosheets. In the present work, the optimized result was achieved at the pressure, heating temperature, applied power and gas proportion of 600mTorr, 800 °C, 500 W and 20:20:15, respectively, and the augmenting of both CH4 and H2 concentrations had a positive effect on the etching of amorphous carbon. Additionally, H2 and C2 hydrocarbons were detected as the main exhaust gases. The selectivity of H2 and C2H2 , measured in exhaust gases, reached up to 52% and 8%, respectively, which implied a process of free radical reactions and electron collision dissociation. Based on a comprehensive investigation of spectral and electrical parameters and synthesized products, the reaction mechanism of collision, dissociation, diffusion, etc, in ICPECVD could be speculated, providing a probable guide for experimental and industrial applications.
Keywords:vertical graphene nanosheets   gaseous products   OES   electrical diagnosis   ICPECVD  
点击此处可从《等离子体科学和技术》浏览原始摘要信息
点击此处可从《等离子体科学和技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号