首页 | 本学科首页   官方微博 | 高级检索  
     

直线截距直方图城区遥感图像多阈值分割
引用本文:吴诗婳1,吴一全1,2,3,4,5,周建江1. 直线截距直方图城区遥感图像多阈值分割[J]. 智能系统学报, 2018, 13(2): 227-235. DOI: 10.11992/tis.201609012
作者姓名:吴诗婳1  吴一全1  2  3  4  5  周建江1
作者单位:1. 南京航空航天大学 电子信息工程学院, 江苏 南京 211106;2. 城市空间信息工程北京市重点实验室, 北京 100038;3. 江西省数字国土重点实验室, 江西 南昌 330013;4. 江苏省大数据分析技术重点实验室, 江苏 南京 210044;5. 浙江省信号处理重点实验室, 浙江 杭州 310023
摘    要:阈值分割简单有效,但现有的单阈值方法对城区图像分割效果不佳,难以取得令人满意的结果。为了快速准确地对城区遥感图像进行分割,本文提出了基于直线截距直方图倒数灰度熵和人工蜂群优化(artificial bee colony optimization, ABC)的多阈值分割方法。首先,给出直线截距直方图的定义并建立城区遥感图像的直线截距直方图;然后,计算该直方图倒数灰度熵的大小,推导出其单阈值选取公式;最后,将其推广到多阈值选取,并利用人工蜂群优化算法,对多个阈值进行快速精确地寻优,以此最终实现城区遥感图像的多阈值分割。实验结果表明,该方法所分割的图像中多目标的形状、边缘更为准确,纹理及细节特征更加清晰,且所需运行时间仅为同类多阈值分割方法的25%,是一种行之有效的城区遥感图像分割方法。

关 键 词:城区提取  遥感图像  图像分割  阈值化  多阈值选取  直线截距直方图  倒数灰度熵  人工蜂群优化

Multi-level thresholding for remote sensing image of urban area based on line intercept histogram
WU Shihua1,WU Yiquan1,2,3,4,5,ZHOU Jianjiang1. Multi-level thresholding for remote sensing image of urban area based on line intercept histogram[J]. CAAL Transactions on Intelligent Systems, 2018, 13(2): 227-235. DOI: 10.11992/tis.201609012
Authors:WU Shihua1  WU Yiquan1  2  3  4  5  ZHOU Jianjiang1
Affiliation:1. College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;2. Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100038, China;3. Jiangxi Province Key Labor
Abstract:Threshold segmentation is a kind of simple and effective method, however, the existing single-threshold method is hard to realize satisfactory effect in segmenting the images of urban area. In order to segment the remote sensing images of urban area quickly and accurately, a multi-threshold segmentation method based on straight-line intercept histogram, reciprocal grayscale entropy and Artificial Bee Colony (ABC) Optimization was proposed in the paper. Firstly, the straight-line intercept histogram was defined and the straight-line intercept histogram of the urban remote sensing image was established; then the value of the reciprocal grayscale entropy of the histogram was calculated and the single-threshold selection formula was deduced; finally, the application was popularized to multi-threshold selection, ABC Optimization algorithm was utilized for precise optimization of many thresholds, so as to finally realize the multi-threshold segmentation of urban remote sensing images. A large number of experiments show that, the multi-object shape and edge in the images segmented by the method are more accurate, the textures and details are more explicit, in addition, its running time is only 25% of other similar multi-threshold segmentation methods. This is a kind of effective method for segmenting the remote sensing images of urban area.
Keywords:extraction of urban area   remote sensing image   image segmentation   thresholding   multi-level threshold selection   straight-line intercept histogram   reciprocal grayscale entropy   optimization of artificial bee colony
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号