首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积特征和贝叶斯分类器的人脸识别
引用本文:冯小荣,惠康华,柳振东. 基于卷积特征和贝叶斯分类器的人脸识别[J]. 智能系统学报, 2018, 13(5): 769-775. DOI: 10.11992/tis.201706052
作者姓名:冯小荣  惠康华  柳振东
作者单位:中国民航大学 计算机科学与技术学院, 天津 300300
摘    要:为解决传统人脸识别算法特征提取困难的问题,提出了基于卷积特征和贝叶斯分类器的人脸识别方法,利用卷积神经网络提取人脸特征,通过主成分分析法对特征降维,最后利用贝叶斯分类器进行判别分类,在ORL(olivetti research laboratory)人脸库上进行实验,获得了99.00%的识别准确率。实验结果表明,卷积神经网络提取的人脸图像特征具有很强的辨识度,与PCA(principal component analysis)和贝叶斯分类器结合之后可有效提高人脸识别的准确率。

关 键 词:人脸识别  卷积神经网络  模式识别  深度学习  贝叶斯分类器

Face recognition based on convolution feature and Bayes classifier
FENG Xiaorong,HUI Kanghua,LIU Zhendong. Face recognition based on convolution feature and Bayes classifier[J]. CAAL Transactions on Intelligent Systems, 2018, 13(5): 769-775. DOI: 10.11992/tis.201706052
Authors:FENG Xiaorong  HUI Kanghua  LIU Zhendong
Affiliation:School of Computer Science and Technology, Civil Aviation University of China, Tianjin 300300, China
Abstract:To solve the difficulty of feature extraction of the traditional face recognition algorithm, a new method based on convolution feature and Bayes classifier is proposed, which uses convolution neural network to extract facial features and principal component analysis (PCA) to reduce the feature dimension, and finally, employs a Bayes classifier to classify the features. Experiments were carried out on the ORL face database, and a recognition accuracy of 99% was achieved. The experimental results show that the face features extracted by the convolution neural network have a strong degree of recognition. Therefore, the accuracy of face recognition in feature extraction can be effectively improved by combining PCA and Bayes classifier with convolution neural network.
Keywords:face recognition   convolutional neural network   pattern recognition   deep learning   Bayes classifier
点击此处可从《智能系统学报》浏览原始摘要信息
点击此处可从《智能系统学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号