首页 | 本学科首页   官方微博 | 高级检索  
     


Full Torsional Behavior of RC Beams Wrapped with FRP: Analytical Model
Authors:A Deifalla  A Ghobarah
Affiliation:1Assistant Professor, Dept. of Civil Engineering, The Higher Institute of Engineering, El Shorouk Academy, El Shorouk City P. B. 3, Egypt. E-mail: diffalaf@mcmaster.ca
2Professor, Dept. of Civil Engineering, McMaster Univ., Hamilton ON, Canada L8S 4L7.
Abstract:Torsion failure is an undesirable brittle form of failure. Although previous experimental studies have shown that using fiber-reinforced polymer (FRP) sheets for torsion strengthening of reinforced concrete (RC) beams is an effective solution in many situations, very few analytical models are available for predicting the section capacity. None of these models predicted the full behavior of RC beams wrapped with FRP, account for the fact that the FRP is not bonded to all beam faces, or predicted the ultimate FRP strain using equations developed based on testing FRP strengthened beams in torsion. In this paper, an analytical model was developed for the case of the RC beams strengthened in torsion. The model is based on the basics of the modified compression field theory, the hollow tube analogy, and the compatibility at the corner of the cross section. Several modifications were implemented to be able to take into account the effect of various parameters including various strengthening schemes where the FRP is not bonded to all beam faces, FRP contribution, and different failure modes. The model showed good agreement with the experimental results. The model predicted the strength more accurately than a previous model, which will be discussed later. The model predicted the FRP strain and the failure mode.
Keywords:Bonding  Fiber reinforced polymer  Torsion  Concrete beams  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号