A recognition method of vibration parameter image based on improved immune negative selection algorithm for rotating machinery |
| |
Authors: | Dou Wei and Liu Zhan Shen |
| |
Affiliation: | School of Energy Science and Engineering, Harbin Institute of Technology, Harbin i 50001, China |
| |
Abstract: | To overcome the limitations of traditional monitoring methods, based on vibration parameter image of rotating machinery, this paper presents an abnormality online monitoring method suitable for rotating machinery using the negative selection mechanism of biology immune system. This method uses techniques of biology clone and learning mechanism to improve the negative selection algorithm to generate detectors possessing different monitoring radius, covers the abnormality space effectively, and avoids such problems as the low efficiency of generating detectors, etc. The result of an example applying the presented monitoring method shows that this method can solve the difficulty of obtaining fault samples preferably and extract the turbine state character effec tively, it also can detect abnormality by causing various fault of the turbine and obtain the degree of abnormality accurately. The exact monitoring precision of abnormality indicates that this method is feasible and has better on-line quality, accuracy and robustness. |
| |
Keywords: | artificial immune system negative selection algorithm abnormality monitor image recognition rotating machinery |
本文献已被 CNKI 维普 万方数据 等数据库收录! |
| 点击此处可从《哈尔滨工业大学学报(英文版)》浏览原始摘要信息 |
|
点击此处可从《哈尔滨工业大学学报(英文版)》下载全文 |