首页 | 本学科首页   官方微博 | 高级检索  
     


Arbitrary placement of local meshes in a global mesh by the interface‐element method (IEM)
Authors:Hyun‐Gyu Kim
Abstract:A new method is proposed to place local meshes in a global mesh with the aid of the interface‐element method (IEM). The interface‐elements use moving least‐square (MLS)‐based shape functions to join partitioned finite‐element domains with non‐matching interfaces. The supports of nodes are defined to satisfy the continuity condition on the interfaces by introducing pseudonodes on the boundaries of interface regions. Particularly, the weight functions of nodes on the boundaries of interface regions span only neighbouring nodes, ensuring that the resulting shape functions are identical to those of adjoining finite‐elements. The completeness of the shape functions of the interface‐elements up to the order of basis provides a reasonable transfer of strain fields through the non‐matching interfaces between partitioned domains. Taking these great advantages of the IEM, local meshes can be easily inserted at arbitrary places in a global mesh. Several numerical examples show the effectiveness of this technique for modelling of local regions in a global domain. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:global–  local analysis  interface‐element method  finite‐element method  non‐matching interface  partitioned domains  crack propagation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号