首页 | 本学科首页   官方微博 | 高级检索  
     


Meshless local boundary integral equation method for 2D elastodynamic problems
Authors:J. Sladek  V. Sladek  R. Van Keer
Abstract:A new meshless method for solving transient elastodynamic boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation (MLS), is proposed in this paper. The LBIE with the MLS is applied to both transient and steady‐state (Laplace transformed) elastodynamics. Applying the MLS approximation for spatially dependent terms in the first approach, the LBIEs are transformed into a system of ordinary differential equations for nodal unknowns. This system of ordinary differential equations is solved by the Houbolt finite difference scheme. In the second formulation, the time variable is eliminated by using the Laplace transformation. Unknown Laplace transforms of displacements and traction vectors are computed from the LBIEs with the MLS approximation. The time‐dependent values are obtained by the Durbin inversion technique. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:moving least square approximation  time‐ and Laplace‐domain formulation  Houbolt method  Durbin inversion
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号