首页 | 本学科首页   官方微博 | 高级检索  
     

基于LSTM深度学习模型的华北地区参考作物蒸散量预测研究
作者姓名:邢立文  崔宁博  董娟
作者单位:1. 山西省水利水电科学研究院,山西 太原 030000; 2. 四川大学 水利水电学院,四川 成都 610065; 3. 山西省生物研究所,山西 太原 030000
基金项目:国家重点研发计划项目( 2016YFC0400206) ; 国家自然科学基金项目( 51779161)
摘    要:为有效提高华北地下水漏斗区参考作物蒸散量ET_0的预报精度,本文以华北地区7个气象代表站1958—2010年ET_(0-PM)(Penman-Monteith,P-M)的历史时间序列为训练集构建LSTM模型,以2011—2017年ET_(0-PM)的时间序列为验证集将LSTM模型与其他4种经验模型进行对比分析。结果表明:LSTM在华北地区预测的整体评价指标Gpi(Global performance indicator)排名第一,该模型可以作为华北地区逐月ET_0预测的推荐模型,为我国精准农业灌溉预报提供科学的依据。

关 键 词:LSTM 模型  参考作物蒸散量 ET0  华北地区  深度学习模型   
收稿时间:2018-12-07
本文献已被 CNKI 等数据库收录!
点击此处可从《水利水电技术》浏览原始摘要信息
点击此处可从《水利水电技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号