首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and electrochemical properties of La, F dual-doped iLa0.01Mn1.99O3.99F0.01 cathode materials
Authors:Meng Chen  Shengjun Li  Chuang Yang
Affiliation:College of Material Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:The cathode materials LiMn2O4 and rare earth elements La-doped or La and F dual-doped spinel lithium manganese oxides were synthesized by the citric acid-assisted sol-gel method. The synthesized samples were investigated by differential thermal analysis (DTA) and thermogravimetry (TG) measurements, X-ray diffraction (XRD), scanning electronic microscope (SEM), cyclic voltammetry (CV), and charge-discharge test. XRD data shows that all the samples exhibit the same pure spinel phase, and the LiLa0.01Mn1.99O3.99F0.01 and LiLa0.01Mn1.99O4 samples have smaller lattice parameters and unit cell volume than LiMn2O4. SEM indicates that LiLa0.01Mn1.99O3.99F0.01 has a slightly smaller particle size and a more regular morphology structure with narrow size distribution. The charge-discharge test reveals that the initial capacities of LiMn2O4, LiLa0.01Mn1.99O4, and LiLa0.01Mn1.99O3.99F0.01 are 129.9, 122.8, and 126.4 mAh·g−1, and the capacity losses of the initial values after 50 cycles are 14.5%, 7.6%, and 8.0%, respectively. The CVs show that the La and F dual-doped spinel displays a better reversibility than LiMn2O4.
Keywords:lithium ion battery  cathode material  LiMn2O4  structure  electrochemical properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号