首页 | 本学科首页   官方微博 | 高级检索  
     


High Temperature Interactions Between Residual Oil Ash and Dispersed Kaolinite Powders
Authors:William P Linak  C Andrew Miller  Joseph P Wood  Takuya Shinagawa  Jong-Ik Yoo  Dawn A Santoianni
Affiliation:1. National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park , North Carolina , USA;2. ARCADIS Geraghty &3. Miller, Inc. , Durham , North Carolina , USA
Abstract:The potential use of sorbents to manage ultrafine ash aerosol emissions from residual oil combustion was investigated using a downfired 82 kW laboratory-scale refractory-lined combustor. The major constituents were vanadium (V), nickel (Ni), iron (Fe), and zinc (Zn). The overall ash content of residual oil is very low, resulting in total ash vaporization at 1725 K with appreciable vaporization occurring at temperatures as low as 1400 K. Therefore, the possibility of interactions between ash vapor and sorbent substrates exists. Kaolinite powder was injected at various locations in the combustor. Ash scavenging was determined from particle size distributions (PSDs) measured by a Scanning Mobility Particle Sizer. Impactor samples and X-ray fluorescence (XRF) analyses supported these data. Injection of kaolinite sorbent was able to capture up to 60% of all the ash in the residual fuel oil. However, captures of ~ 30% were more common when sorbent injection occurred downstream of the combustion zone, rather than with the combustion air into the main flame. Without sorbent addition, baseline measurements of the fly ash PSD and chemical composition indicate that under the practical combustion conditions examined here, essentially all of the metals contained in the residual oil form ultrafine particles (~0.1 μ m diameter). Theoretical calculations showed that coagulation between the oil ash nuclei and the kaolinite sorbent could account for, at most, 17% of the metal capture which was always less than that measured. The data suggest that kaolinite powders reactively capture a portion of the vapor phase metals. Mechanisms and rates still remain to be quantified.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号