首页 | 本学科首页   官方微博 | 高级检索  
     


Characterization of Submicrometer Aerosol Deposition in Extrathoracic Airways during Nasal Exhalation
Authors:Jinxiang Xi  P Worth Longest
Affiliation:1. Department of Systems Engineering , University of Arkansas , Little Rock, Arkansas, USA;2. Department of Mechanical Engineering , Virginia Commonwealth University , Richmond, Virginia, USA;3. Department of Pharmaceutics , Virginia Commonwealth University , Richmond, Virginia, USA
Abstract:Submicrometer and especially fine aerosols that enter the respiratory tract are largely exhaled. However, the deposition of these aerosols under expiratory conditions is not well characterized. In this study, expiratory deposition patterns of both ultrafine (<100 nm) and fine (100–1000 nm) respiratory aerosols were numerically modeled in a realistic nasal-laryngeal airway geometry. Particle sizes ranging from 1 through 1000 nm and exhalation flow rates from 4 through 45 L/min were considered. Under these conditions, turbulence only appeared significant in the laryngeal and pharyngeal regions, whereas the nasal passages were primarily in the laminar regime. Exhaled particles were simulated with both a continuous-phase drift flux velocity correction (DF-VC) model and a discrete Lagrangian tracking approach. For the deposition of ultrafine particles, both models provided a good match to existing experimental values, and simulation results corroborated an existing in vivo–based diffusion parameter (i.e., D 0.5 Q ?0.28). For fine particles, inertia-based deposition was found to have a greater dependence on the Reynolds number than on the Stokes number (i.e., St0.1 kRe0.9), indicating that secondary flows may significantly influence aerosol deposition in the nasal-laryngeal geometry. A new correlation was proposed for deposition in the extrathoracic airways that is applicable for both ultrafine and fine aerosols over a broad range of nasal exhalation conditions. Results of this study indicate that physical realism of the airway model is crucial in determining particle behavior and fate and that the laryngeal and pharyngeal regions should be retained in future studies of expiratory deposition in the nasal region.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号