首页 | 本学科首页   官方微博 | 高级检索  
     

基于双层相空间相似度的滚动轴承故障模式与故障程度的综合辨识
引用本文:刘永斌,何兵,刘方,赵艺雷,方健. 基于双层相空间相似度的滚动轴承故障模式与故障程度的综合辨识[J]. 振动与冲击, 2017, 36(4): 178-184
作者姓名:刘永斌  何兵  刘方  赵艺雷  方健
作者单位:1.安徽大学机械工程系合肥 230601;
2.中国科学技术大学精密机械与精密仪器系合肥 230027
摘    要:提出了一种基于双层相空间相似度分析算法结构,应用于滚动轴承故障类型和故障程度的综合辨识。该算法第一层结构中,对测试数据和样本数据进行相空间重构(PSR),得到在拓扑意义下等价的相空间,然后使用滑动窗截取数据段,采用归一化互相关函数(NCC)进行相空间相似度分析,实现轴承故障类型的分类;在第二层结构中,以已知不同故障程度数据之间的相空间相似度(PSS)为特征训练SVR结构,实现对故障程度的跟踪。实验信号分析结果表明,该方法能有效对轴承故障类型和故障程度进行综合辨识。与传统方法的对比表明该方法在准确性上有了一定的提高。

关 键 词:滚动轴承   故障诊断   相空间重构   相似度分析 

Comprehensive recognition of rolling bearing fault pattern and fault degrees based on two-layer similarity in phase space
LIU Yongbin,HE Bing,LIU Fang,ZHAO Yilei,FANG Jian. Comprehensive recognition of rolling bearing fault pattern and fault degrees based on two-layer similarity in phase space[J]. Journal of Vibration and Shock, 2017, 36(4): 178-184
Authors:LIU Yongbin  HE Bing  LIU Fang  ZHAO Yilei  FANG Jian
Affiliation:1.Department of Mechanical Engineering,Anhui University,Hefei 230601,China;2.Department of Precision Machinery and Precision Instrumentation,University of Science and Technology of China,Hefei 230027,China
Abstract:A comprehensive method for rolling bearing fault patterns and fault degree recognition based on two-layer algorithm structure of phase space similarity analysis was presented in this paper. In the first layer of the algorithm,the data were processed by the phase space reconstruction (PSR) to get a phase space which was equivalence in the  topological sense. Then a sliding window was employed to chop the data segments and the normalized cross correlation function (NCC) was employed to execute similarity analysis,realizing the classification of bearing fault patterns. In the second layer,a SVR structure was trained by phase space similarity (PSS) that was obtained in different fault degree. The SVR structure was then used to recognize the fault degree. The results of experimental signal analysis show that the proposed method can effectively recognize comprehensive bearing fault pattern and fault degree. Compared with traditional methods,it shows an improvement in accuracy of recognition.
Keywords:rolling bearingfault diagnosisphase space reconstructionsimilarity analysis
本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号