首页 | 本学科首页   官方微博 | 高级检索  
     


Ash Vaporization in Circulating Fluidized Bed Coal Combustion
Authors:Terttaliisa Lind  Esko I Kauppinen  Willy Maenhaut  Anup Shah  Frank Huggins
Affiliation:1. VTT CHBMICAL TECHNOLOGY, AEROSOL TECHNOLOGY GROUP , P.O. BOX 1401, VTT, FIN-02044, FINLAND;2. UNIVERSITY OF GENT, INSTITUTE FOR NUCLEAR SCIENCES , PROEFTUINSTRAAT 86, B-9000, GENT, BELGIUM;3. UNIVERSITY OF KENTUCKY , LEXINGTON, KENTUCKY, USA
Abstract:ABSTRACT

In this work, the vaporization of the ash forming constituents in circulating fluidized bed combustion (CFBC) in a full-scale 80 MWth unit was studied. Ash vaporization in CFBC was studied by measuring the fly ash aerosols in a full-scale boiler upstream of the electrostatic precipitator (ESP) at the flue gas temperature of 125°C. The fuel was a Venezuelan bituminous coal, and a limestone sorbent was used during the measurements. The fly ash number size distributions showed two distinct modes in the submicrometer size range, at particle diameters 0.02 and 0.3 μm. The concentration of the ultrafine 0.02-μm mode showed a large variation with time and it decreased as the measurements advanced. The concentration of the 0.02-μm mode was two orders of magnitude lower than in the submicrometer mode observed earlier in the bubbling FBC and up to three orders of magnitude lower than in the pulverized coal combustion. Scanning electron micrographs showed few ultrafine particles. The intermediate mode at 0.3 μm consisted of particles irregular in shape, and hence in this mode the particles had not been formed via a gas to particle route. We propose that the 0.3-μm mode had been formed from the partial melting of the very fine mineral particles in the coal. The mass size distribution in the size range 0.01–70 μm was unimodal with maximum at 20 μm. Less than 1% of the fly ash particles was found in the submicrometer size range. Ninety percent of Mg in coal was organically bound, and it was found to react with quartz and aluminosilicate minerals inside the coal particle. No Mg was found to be released to the gas phase and Mg mass fraction size distribution was size independent. A fraction of halogens CI, Br and I were found to be in the gas phase after the combustion.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号