首页 | 本学科首页   官方微博 | 高级检索  
     

往复振荡对活塞冷却油腔内纳米流体传热及流动特性的影响
引用本文:张亮,白敏丽.往复振荡对活塞冷却油腔内纳米流体传热及流动特性的影响[J].振动与冲击,2017,36(5):192-198.
作者姓名:张亮  白敏丽
作者单位:1.燕山大学 车辆与能源学院,秦皇岛 066004;
2. 大连理工大学能源与动力学院,大连 116024
摘    要:内燃机工作过程中,燃烧产生的部分热能传给活塞。当活塞功率密度超过0.3 kW/cm~2时,必须采用冷却油腔进行冷却。为揭示纳米流体在冷却油腔内的传热及流动特性,对不同种类纳米流体在随活塞冷却油腔同步往复振荡状态下的传热和流动特性进行了对流换热和可视化实验。研究发现:最优传热充液率为53.4%;往复振荡频率、颗粒的水力半径与活塞冷却油腔内的对流换热系数成正比;转子转动角度在180°~270°范围时,工作流体混合效果最佳;纳米流体的流动紊乱度在整个往复振荡周期内均好于纯净水。

关 键 词:往复振荡    充液率    传热    纳米流体  

Heat transfer and flow characteristics of nanofluid at a cooling chamber of a piston under reciprocating vibration
ZHANG Liang,BAI Minli.Heat transfer and flow characteristics of nanofluid at a cooling chamber of a piston under reciprocating vibration[J].Journal of Vibration and Shock,2017,36(5):192-198.
Authors:ZHANG Liang  BAI Minli
Affiliation:1.College of Vehicles and Energy,Yanshan University,Qinhuangdao 066004,China; 2.College of Energy and Power Engineering,Dalian University of Technology,Dalian 116024,China
Abstract:Part of heat energy produced by burning oil is transferred to the piston in a combustion engine.When the power density of the piston exceeds 0.3 kW/cm2,the piston must be cooled with a cooling chamber.In order to reveal heat transfer and flow characteristics of nanofluid in the cooling chamber,heat transfer and visualization tests with different types of nanofluid were performed in a straight circular pipe under reciprocating vibration.The test results showed that the optimal filling rate for heat transfer is 53.4%; the frequency of reciprocating vibration and the hydraulic radius of particles are all proportional to the convection heat transfer coefficient of the cooling chamber; the fluid mixure effect is the best when the rotation angle of rotor is with in 180° to 270°; the flowing disord level of nanofluid is better than that of pure water in a reciprocating vibration cycle.
Keywords:reciprocating vibrationfilling rateheat transfernanofluids
本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号