首页 | 本学科首页   官方微博 | 高级检索  
     


Electron injection in "electron-only" devices based on a symmetric metal/silole/metal structure
Authors:Palilis  LC Uchida  M Kafafi  ZH
Affiliation:Opt. Sci. Div., U.S. Naval Res. Lab., Washington, DC, USA;
Abstract:We report on electron injection from two different metal electrodes into three silole derivatives, namely 2,5-di-(3-biphenyl)-1,1-dimethyl-3,4-diphenylsilacyclopentadiene (PPSPP), 1,2-bis(1-methyl-2,3,4,5,-tetraphenylsilacyclopentadienyl) ethane (2PSP) and 2,5-bis-(2', 2'-bipyridin-6-yl)-1, 1-dimethyl-3,4-diphenylsilacyclopentadiene (PyPySPyPy), previously employed as emissive and electron transport materials in molecular organic light-emitting diodes (MOLEDs). Silole films were sandwiched between symmetric Mg:Ag or bilayer CsF-Al electrodes. The steady-state current density-voltage characteristics were measured as a function of the silole layer thickness for the two cathodes. The trap-free space-charge-limited current based on time-of-flight measurements compared with the injected electron current for PyPySPyPy indicated that Mg:Ag contacts limit the injected current, while CsF-Al contacts behave as quasi-ohmic contacts. Similar findings were obtained for 2PSP and PPSPP allowing steady-state derived electron mobility parameters to be extracted. Based on space-charge-limited conduction analysis of the measured current-voltage characteristics, PyPySPyPy is found to be a superior electron transporting silole with approximately an order of magnitude higher electron mobility (2.0/spl times/10/sup -4/ cm/sup 2//Vs) compared with those of 2PSP (2.4/spl times/10/sup -5/ cm/sup 2//Vs) and PPSPP (5.2/spl times/10/sup -5/ cm/sup 2//Vs), which is significantly higher than that of the prototype electron transport material tris (8-hydroxyquinolinolato) aluminum (III) (Alq/sub 3/) (6.5/spl times/10/sup -7/ cm/sup 2//Vs) at 0.6 MV/cm.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号