首页 | 本学科首页   官方微博 | 高级检索  
     


Tribology and surface mechanical properties of the oxide film formed by excimer laser surface treatment of AISI 304 stainless steel
Authors:T.R. Jervis  J.-P. Hirvonen
Affiliation:

Center for Materials Science, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

Abstract:The surface hardness and tribological properties of the surface oxide formed by excimer laser surface processing of AISI 304 stainless steel have been examined. It is found that laser processing initially anneals the stress-induced martensite on the surface of the stainless steel, resulting in a softening of the surface. After more than 100 cycles of melting and resolidification, a surface oxide film develops which is harder than the austenite of the annealed substrate and comparable in hardness to the stress-induced martensite. The thickness of the oxide film is dependent on the number of laser pulses, so that arbitrarily thick films can be produced. The dry-sliding friction of the oxide film against a steel pin is substantially lower than that of the untreated polished surface with only the native oxide film and there is substantially less damage in both the wear track and the pin. The hard surface oxide is underlain by relatively soft austenite. The tribological behavior is thus not obviously the result of the surface mechanical properties of the film-substrate combination but is ascribed to changes in the chemical interaction between the pin and the disk.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号