首页 | 本学科首页   官方微博 | 高级检索  
     


Non-woven fabric-based microfluidic devices with hydrophobic wax barrier
Authors:Zhang  Jing  Qiu  Xianbo  Huang  Lei  Fan  Yiqiang  Miao  Guijun  Zhang  Lulu  Xu  Chi  Liu  Luyao  Dong  Xiaobin
Affiliation:1.College of Information Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
;2.School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
;3.School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, 02138, USA
;
Abstract:

This study proposed a novel method for the fabrication of non-woven based microfluidic devices with a wax hydrophobic barrier. Current microfluidic devices were fabricated with glass or polymer material, and paper is also widely used for the fabrication of low-cost microfluidic devices. The application of non-woven fabric based microfluidic devices provides a new option of bulk materials for microfluidics. Compared with the glass or polymer material used in microfluidics, non-woven fabric is low-cost, easy to process and disposable. Fluid can penetrate through the non-woven fabric material with capillary force without the requirement of external pumps. As fiber-based material, comparing with paper, non-woven fabric material is more durable with higher mechanical strength, and various types of non-woven fabric material also provide a board choice of surface chemical/physical properties for microfluidic applications. In this study, the hydrophilic non-woven fabric is chosen as the bulk material for microfluidic devices, a wax pattern transfer protocol is also proposed in this study for the deposition of hydrophobic barriers. For a demonstration of the proposed fabrication technique, a microfluidic mixer was also fabricated in this study.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号