首页 | 本学科首页   官方微博 | 高级检索  
     

集成最近邻规则的半监督顺序回归算法
引用本文:何海江,何文德,刘华富. 集成最近邻规则的半监督顺序回归算法[J]. 计算机应用, 2010, 30(4): 1022-1025
作者姓名:何海江  何文德  刘华富
作者单位:1. 长沙学院2.
基金项目:湖南省教育厅科学研究项目(07C133)
摘    要:监督型顺序回归算法需要足够多的有标签样本,而在实践中,标注样本的序数耗时耗力,甚至难以完成。为此,提出一种集成最近邻规则的半监督顺序回归算法。基于最近邻,针对每个有标签样本,在无标签数据集选择与其最近似的若干样本赋以相同序数;再由监督型顺序回归算法训练有标签样本和新标注样本。多个数据集的实验结果显示,该方法能显著改善顺序回归性能。另外,引入折扣因子λ评估新标注样本的可信度,并讨论了λ和有标签数据集大小对方法的影响。

关 键 词:半监督顺序回归  最近邻  无标签样本  折扣因子  
收稿时间:2009-09-17
修稿时间:2009-11-16

Towards semi-supervised ordinal regression with nearest neighbor
HE Hai-jiang,HE Wen-de,LIU Hua-fu. Towards semi-supervised ordinal regression with nearest neighbor[J]. Journal of Computer Applications, 2010, 30(4): 1022-1025
Authors:HE Hai-jiang  HE Wen-de  LIU Hua-fu
Affiliation:Department of Computer Science and Technology/a>;Changsha University/a>;Changsha Hunan 410003/a>;China
Abstract:The supervised ordinal regression algorithm often requires large amount of labeled samples.However,in the real applications,labeling instances is time and labor consuming,and sometimes even unrealistic.Therefore,a semi-supervised ordinal regression algorithm was proposed,which learned from both the labeled and unlabeled examples.The proposed method began by choosing some instances from unlabeled dataset that are most similar to one labeled example in labeled dataset,and assigning them the corresponding rank...
Keywords:semi-supervised ordinal regression  nearest neighbor  unlabeled sample  discount factor  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《计算机应用》浏览原始摘要信息
点击此处可从《计算机应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号