首页 | 本学科首页   官方微博 | 高级检索  
     


Oxygen-ion diffusion and electrical conductionof LaMoFeO systems
Authors:LI Chun  FANG Qian-feng  WANG Xian-ping  ZHANG Guo-guang
Affiliation:1.Department of Materials Science and Engineering, Nanchang Aeronautical University; Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences; 2.Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences; 3.Department of Materials Science and Engineering, Nanchang Aeronautical University;
Abstract:Based on the novel oxygen ion conductor La2Mo2O9, a series of Fe-doped samples of La2Mo2-xFexO9-? (x = 0, 0.025, 0.05, 0.1) was prepared by conventional solid-state reaction method. The structure, phase transition, oxygen ion diffusion and electrical conductivity were studied with X-ray diffraction (XRD), differential scanning calorimeter (DSC), direct current (dc) resistivity, and dielectric relaxation (DR) measurements. One DR peak associated with the short-distance diffusion of oxygen vacancies was observed in both temperature and frequency spectra. The activation energy for oxygen ion diffusion in Fe-doped La2Mo2O9 samples was smaller than that in un-doped samples. Fe doping can increase the ionic conductivity of La2Mo2-xFexO9-? samples as well as the ionic transference number in the temperature range from 680°C to 400°C in comparison with the un-doped samples, although the electronic conductivity slightly increases. It is found that because of the small solubility of Fe2O3 in La2Mo2O9 (<5%), Fe doping cannot suppress the phase transition that occurred around 570°C, but 2.5% K doping at La site at the same time (e.g. in sample La1.95K0.05Mo1.95Fe0.05O9-?) can completely suppress this phase transition and increase conductivity at lower temperatures.
Keywords:
点击此处可从《材料科学前沿(英文版)》浏览原始摘要信息
点击此处可从《材料科学前沿(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号