首页 | 本学科首页   官方微博 | 高级检索  
     


Design of PID controller with incomplete derivation based on ant system algorithm
Authors:Guanzheng Tan  Qingdong Zeng  Wenbin Li
Affiliation:School of Information Science and Engineering, Central South University, Changsha Hunan 410083,China
Abstract:A new and intelligent design method for PID controller with incomplete derivation is proposed based on the ant system algorithm ( ASA) . For a given control system with this kind of PID controller, a group of optimal PID controller parameters K p * , T i * , and T d * can be obtained by taking the overshoot, settling time, and steady-state error of the system's unit step response as the performance indexes and by use of our improved ant system algorithm. K p * , T i * , and T d * can be used in real-time control. This kind of controller is called the ASA-PID controller with incomplete derivation. To verify the performance of the ASA-PID controller, three different typical transfer functions were tested, and three existing typical tuning methods of PID controller parameters, including the Ziegler-Nichols method (ZN),the genetic algorithm (GA),and the simulated annealing (SA), were adopted for comparison. The simulation results showed that the ASA-PID controller can be used to control different objects and has better performance compared with the ZN-PID and GA-PID controllers, and comparable performance compared with the SA-PID controller.
Keywords:PID controller  Incomplete derivation  Parameter tuning  Ant system algorithm  Genetic algorithm  Simulated annealing
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《控制理论与应用(英文版)》浏览原始摘要信息
点击此处可从《控制理论与应用(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号