首页 | 本学科首页   官方微博 | 高级检索  
     


Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite
Authors:Chen Hao  Zhao Yaogang  Wang Aiqin
Affiliation:Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
Abstract:A series of activated palygorskite clay by HCl with different concentrations was prepared and applied as adsorbents for removal of Cu(II) from aqueous solutions. The effects of contact time, adsorbent dosages and pHs of suspension on the adsorption capacities for Cu(II) were investigated. The results showed that adsorption capacity of activated palygorskites increased with increasing the HCl concentration and the maximum adsorption capacity with 32.24 mg/g for Cu(II) is obtained at 12 mol/L of HCl concentration. The variations in IR spectra and pH of solution after adsorption Cu(II) confirmed that the numerous amount of silanol groups (Si-OH) originated by acid treatment were mainly responsible for Cu(II) adsorption onto acid-activated palygorskite. Kinetic studies indicated that the adsorption mechanisms in the Cu(II)/acid-activated palygorskite system followed the pseudo-second-order kinetic model with a relatively small contribution of film diffusion. Equilibrium data fitted well with Freundlich isotherm model compared to Langmuir isotherm model, indicating that adsorption takes place on heterogeneous surfaces of the acid-activated palygorskite. Adsorption-desorption studies presented that activated palygorskite has lower adsorption and desorption efficiencies using Cu(CH3COO)2 than that of other inorganic copper salts, such as CuSO4, Cu(NO3)2, and CuCl2.
Keywords:Palygorskite clay  Acid-activation  Adsorption  Copper  Kinetic  Isotherm
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号