首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于PSOSVM的盲隐写分析方法
引用本文:刘洪,王建军. 一种基于PSOSVM的盲隐写分析方法[J]. 太赫兹科学与电子信息学报, 2009, 7(2): 136-141
作者姓名:刘洪  王建军
作者单位:复旦大学,电子工程系,上海,200433
摘    要:针对盲隐写分析中的特征选择问题,提出了结合粒子群优化算法(PSO)的支持向量机分类器进行特征选择的方法。该方法使用非线性支持向量机作为分类器,使用PSO为支持向量机寻找最优的图像特征集合作为训练集和测试集,同时选择最优的支持向量机参数,进而利用最优的特征集和支持向量机参数对隐写图像进行检测。实验结果表明,该优化方法明显优于Farid。ANOVA和F—score方法,提高了检测隐写图像的成功率和系统检测效率。

关 键 词:信息隐藏  隐写分析  粒子群优化  支持向量机  特征选择  参数优化

A Blind Steganalysis Method Based on PSOSVM
LIU Hong,WANG Jian-jun. A Blind Steganalysis Method Based on PSOSVM[J]. Journal of Terahertz Science and Electronic Information Technology, 2009, 7(2): 136-141
Authors:LIU Hong  WANG Jian-jun
Affiliation:(Department of Electronics Engineering, Fudan University, Shanghai 200433, China)
Abstract:To study the feature selection in blind steganalysis, a new feature selection method based on Particle Swarm Optimization and Support Vector Machine(PSOSVM) is proposed. Using nonlinear SVM as classifier, this method employs the Particle Swarm Optimization(PSO) algorithm to find the best image feature sets as training and testing sets and chooses the best Support Vector Machine(SVM) parameters at the same time. Then the selected image feature sets and parameters are used to detect the stego-imagcs. In order to demonstrate its validity, the proposed method is compared with several existing methods by experiment. The experimental results show that the proposed method outperforms the Farid, Analysis of Variation(ANOVA) and F-score methods. It has higher recognition ratio of stego-images and improves the detection efficiency.
Keywords:information hiding  steganalysis  Particle Swarm Optimization  Support Vector Machine  feature selection  parameter optimization
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《太赫兹科学与电子信息学报》浏览原始摘要信息
点击此处可从《太赫兹科学与电子信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号