首页 | 本学科首页   官方微博 | 高级检索  
     


Complexity of computing with extended propositional logic programs
Authors:V Wiktor Marek  Arcot Rajasekar  Miros?aw Truszczyński
Affiliation:(1) Department of Computer Science, University of Kentucky, 40506 Lexington, KY, USA
Abstract:In this paper we introduce the notion of anF-program, whereF is a collection of formulas. We then study the complexity of computing withF-programs.F-programs can be regarded as a generalization of standard logic programs. Clauses (or rules) ofF-programs are built of formulas fromF. In particular, formulas other than atoms are allowed as ldquobuilding blocksrdquo ofF-program rules. Typical examples ofF are the set of all atoms (in which case the class of ordinary logic programs is obtained), the set of all literals (in this case, we get the class of logic programs with classical negation 9]), the set of all Horn clauses, the set of all clauses, the set of all clauses with at most two literals, the set of all clauses with at least three literals, etc. The notions of minimal and stable models 16, 1, 7] of a logic program have natural generalizations to the case ofF-programs. The resulting notions are called in this paperminimal andstable answer sets. We study the complexity of reasoning involving these notions. In particular, we establish the complexity of determining the existence of a stable answer set, and the complexity of determining the membership of a formula in some (or all) stable answer sets. We study the complexity of the existence of minimal answer sets, and that of determining the membership of a formula in all minimal answer sets. We also list several open problems.This work was partially supported by National Science Foundation under grant IRI-9012902.This work was partially supported by National Science Foundation under grant CCR-9110721.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号