首页 | 本学科首页   官方微博 | 高级检索  
     


On the threshold Voltage of strained-Si-Si/sub 1-x/Ge/sub x/ MOSFETs
Authors:Weimin Zhang Fossum  JG
Affiliation:Dept. of Electr. & Comput. Eng., Univ. of Florida, Gainesville, FL, USA;
Abstract:The threshold voltage shifts (/spl Delta/V/sub t(SS)/ relative to V/sub t/ of Si-control devices) in strained-Si-Si/sub 1-x/Ge/sub x/ (SS) CMOS devices are carefully examined in terms of the shifted two-dimensional energy subbands and the modified effective conduction- and valance-band densities of states. Increased electron affinity as well as bandgap narrowing in the SS layer are shown to be the predominant components of /spl Delta/V/sub t(SS)/, whereas the density-of-state terms tend to be relatively small but not insignificant. The study reveals, for both n-channel and p-channel SS MOSFETs, important physical insights on the varied surface potential at threshold, defined by energy quantization as well as the strain, and on the shifted flat-band voltage that is also part of /spl Delta/V/sub t(SS)/. Models for /spl Delta/V/sub t(SS)/ dependent on the Ge content (x), with comparisons to published data, are presented and used to show that redesign of channel doping in the SS nMOSFET to increase the significantly reduced V/sub tn(SS)/ for off-state current control tends to substantively diminish the inherent SS CMOS relative speed enhancement, e.g., by more than 40% for x=0.20. Interestingly, the SS pMOSFET model predicts small increases in the magnitude of V/sub tp(SS)/.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号