首页 | 本学科首页   官方微博 | 高级检索  
     


Palladium Catalysts for Fatty Acid Deoxygenation: Influence of the Support and Fatty Acid Chain Length on Decarboxylation Kinetics
Authors:Jeffrey P Ford  Jeremy G Immer  H Henry Lamb
Affiliation:1. Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27605-7905, USA
Abstract:Supported metal catalysts containing 5?wt% Pd on silica, alumina, and activated carbon were evaluated for liquid-phase deoxygenation of stearic (octadecanoic), lauric (dodecanoic), and capric (decanoic) acids under 5?% H2 at 300?°C and 15?atm. On-line quadrupole mass spectrometry (QMS) was used to measure CO?+?CO2 yield, CO2 selectivity, H2 consumption, and initial decarboxylation rate. Post-reaction analysis of liquid products by gas chromatography was used to determine n-alkane yields. The Pd/C catalyst was highly active and selective for stearic acid (SA) decarboxylation under these conditions. In contrast, SA deoxygenation over Pd/SiO2 occurred primarily via decarbonylation and at a much slower rate. Pd/Al2O3 exhibited high initial SA decarboxylation activity but deactivated under the test conditions. Similar CO2 selectivity patterns among the catalysts were observed for deoxygenation of lauric and capric acids; however, the initial decarboxylation rates tended to be lower for these substrates. The influence of alkyl chain length on deoxygenation kinetics was investigated for a homologous series of C10?CC18 fatty acids using the Pd/C catalyst. As fatty acid carbon number decreases, reaction time and H2 consumption increase, and CO2 selectivity and initial decarboxylation rate decrease. The increase in initial decarboxylation rates for longer chain fatty acids is attributed to their greater propensity for adsorption on the activated carbon support.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号