首页 | 本学科首页   官方微博 | 高级检索  
     

基于MapReduce的K_means并行算法及改进
引用本文:衣治安,王月. 基于MapReduce的K_means并行算法及改进[J]. 计算机系统应用, 2015, 24(6): 188-192
作者姓名:衣治安  王月
作者单位:东北石油大学计算机与信息技术学院,大庆,163318
摘    要:针对传统k_means聚类算法在处理海量数据时所面临的内存不足、运算速度慢等问题,提出了一种基于MapReduce的K_means并行算法,同时为了改善k_means算法在初始值确定方面的盲目性,采用canopy算法进行改进。实验结果表明,基于MapReduce的K_means并行算法和改进后的算法均能产生良好的聚类效果,不仅提高了聚类质量,而且在处理大数据集方面,改进后的算法的还能够得到趋近于线性的加速比。

关 键 词:MapReduce  k-means算法  canopy算法  并行计算  聚类
收稿时间:2014-10-11
修稿时间:2014-11-13

Parallel K-Means Algorithm and Improved Based on MapReduce
YI Zhi-An and WANG Yue. Parallel K-Means Algorithm and Improved Based on MapReduce[J]. Computer Systems& Applications, 2015, 24(6): 188-192
Authors:YI Zhi-An and WANG Yue
Affiliation:Northeast Petroleum University, College of Computer and Information Technology, Daqing 163318, China;Northeast Petroleum University, College of Computer and Information Technology, Daqing 163318, China
Abstract:In view of the problems that traditional k-means clustering algorithm faces in dealing with mass data, such as running out of memory, the operating in slow speed and so on, this paper proposes a parallel k-means algorithm based on MapReduce. At the same time, in order to overcome the blindness of the k-means algorithm in terms of determining the initial value, we use the canopy algorithm to improve the insufficient. The experimental results show that the parallel k-means algorithm based on MapReduce has an effect on clustering before and after the improvement, not only the quality of the clustering has been increased, but in terms of processing large datasets. The speed-up ratio of the improved algorithm can get closer to the linear.
Keywords:MapReduce  k-means algorithm  canopy algorithm  parallel computation  cluster
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机系统应用》浏览原始摘要信息
点击此处可从《计算机系统应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号