首页 | 本学科首页   官方微博 | 高级检索  
     


Concurrent reachability games
Authors:Luca de Alfaro  Thomas A Henzinger  Orna Kupferman
Affiliation:1. Department of Computer Engineering, University of California, Santa Cruz, USA;2. Computer and Communication Sciences, EPFL, Lausanne, Switzerland;3. School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
Abstract:We consider concurrent two-player games with reachability objectives. In such games, at each round, player 1 and player 2 independently and simultaneously choose moves, and the two choices determine the next state of the game. The objective of player 1 is to reach a set of target states; the objective of player 2 is to prevent this. These are zero-sum games, and the reachability objective is one of the most basic objectives: determining the set of states from which player 1 can win the game is a fundamental problem in control theory and system verification. There are three types of winning states, according to the degree of certainty with which player 1 can reach the target. From type-1 states, player 1 has a deterministic strategy to always reach the target. From type-2 states, player 1 has a randomized strategy to reach the target with probability 1. From type-3 states, player 1 has for every real ε>0ε>0 a randomized strategy to reach the target with probability greater than 1−ε1ε. We show that for finite state spaces, all three sets of winning states can be computed in polynomial time: type-1 states in linear time, and type-2 and type-3 states in quadratic time. The algorithms to compute the three sets of winning states also enable the construction of the winning and spoiling strategies.
Keywords:Games  Reachability  Stochastic games  Concurrent games
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号