首页 | 本学科首页   官方微博 | 高级检索  
     


COMPUTATIONAL SCHEME FOR SIMULATING PLASMA DYNAM-ICS DURING PLASMA-IMMERSION ION IMPLANTATION
Authors:T E Sheridan Plasma Research Laboratory  Australian National University  Canberra  ACT  Australia
Abstract:Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.
Keywords:plasma-immersion ion implantation  plasma sheath  particle- in-cell simulation
本文献已被 CNKI 等数据库收录!
点击此处可从《金属学报(英文版)》浏览原始摘要信息
点击此处可从《金属学报(英文版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号