首页 | 本学科首页   官方微博 | 高级检索  
     


THE INFLUENCE OF HYDROLOGICAL CONNECTIVITY ON FOOD WEB STRUCTURE IN FLOODPLAIN LAKES
Authors:M A Reid  M D Delong  M C Thoms
Affiliation:1. Riverine Landscapes Research Laboratory, Faculty of Applied Science, University of Canberra, Bruce, Australian Capital Territory, Australia;2. Department of Biology, Large River Studies Center, Winona State University, Winona, Minnesota, USA
Abstract:Hydrological connectivity is an important driver of ecosystem structure in floodplain rivers; however, little is known of how hydrological connectivity affects the structure and functioning of food webs in these systems. This study examines aquatic food web structure in 10 floodplain lakes on a dryland river floodplain in eastern Australia across a connectivity gradient. Results for fishes suggest that benthic carbon sources are more important in high connectivity billabongs than in low connectivity billabongs and that pelagic sources are more important in low connectivity billabongs than in high connectivity billabongs. Fishes in less connected billabongs were also found to feed at higher trophic levels than in more connected billabongs. We hypothesize that in high connectivity billabongs, where suitable benthic primary sources are abundant, common fish species such as carp and bony bream feed as detritivores or herbivores; while in low connectivity billabongs, where benthic sources are less abundant, the same species feed as planktivores, insectivores or piscivores. This dietary difference may also be promoted by greater predation efficiency in less structurally complex low connectivity billabongs. The feeding behaviour of these fish species subsequently influences the trophic positions of fishes higher in the food chain and ultimately the total food chain lengths that high and low connectivity billabongs support. The results of this study highlight the importance of hydrological connectivity to the structure of food webs in these systems and the potential for them to be affected by water resource development. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:food webs  stable isotopes  dryland rivers  connectivity  Australia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号