首页 | 本学科首页   官方微博 | 高级检索  
     


Design and fabrication of microtunnel and Si-diaphragm for ZnO based MEMS acoustic sensor for high SPL and low frequency application
Authors:Washim Reza Ali  Mahanth Prasad
Affiliation:1.Department of Electronics and Communication Engineering, College of Engineering and Technology, IILM-Academy of Higher Learning,Greater Noida,India;2.CSIR-Central Electronics Engineering Research Institute,Pilani,India
Abstract:The purpose of the paper is to design and fabricate a ZnO-based MEMS acoustic sensor for higher sound pressure level (SPL) measurement in the range of 120–200 dB and low frequency infrasonic wave detection. The thickness of silicon diaphragm was optimized for higher SPL using MEMS-CAD-Tool COVENTORWARE. The microtunnel which relates the cavity to the atmosphere was designed and simulated analytically for low cut-off frequency of the sensor in infrasonic band. The resonance frequency of the sensor was obtained using modal analysis. The sensitivity of the sensor was also estimated using COVENTORWARE. The optimized Si-diaphragm thickness for the intended SPL range was determined and found to be 50 μm. The lower cut-off frequency of the sensor for a 10 μm-deep microtunnel was found to be 0.094 Hz. The resonance frequency of the sensor was obtained using modal analysis and found to be 78.9 kHz. Based on simulation results, the MEMS acoustic sensor with 10 μm-deep microtunnel was fabricated. The optimum sensitivity of sensor was calculated using simulated results and found to be 116.4 μVolt/Pa. The lower cut-off frequency of the sensor can be utilized to detect low frequency sounds. The high SPL sensing capability of the device up to 200 dB facilitates detection of high sound pressure level in launch vehicles, rocket motors and weapons’ discharge applications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号