首页 | 本学科首页   官方微博 | 高级检索  
     


Aerodynamic characteristics of wind turbine blades with a sinusoidal leading edge
Authors:Ri‐Kui Zhang  Van Dam Jie‐Zhi Wu
Affiliation:1. State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, , Beijing 100871, China;2. The University of Tennessee Space Institute, , Tullahoma, Tennessee 37388, USA
Abstract:The aerodynamic characteristics of a kind of bionic wind turbine blades with a sinusoidal leading edge have been investigated in this paper based on a three‐dimensional Reynolds‐averaged Navier–Stokes simulation. The calculated results show that compared with a straight leading‐edge blade, the new‐type blade has a great improvement in shaft torque at high wind speeds. The localized vortices shedding from the leading‐edge tubercles, which can generate a much greater peak of the leading‐edge suction pressure than that from the straight leading‐edge case, are the physical essentials to enhance the wavy blade's aerodynamic performances as the blade goes into stall. In particular, the outboard segment from the 60%R station to the blade tip is the key region for wavy leading‐edge blades to improve the aerodynamic characteristics at high‐speed inflows. In this key region, a wavy blade can obtain a greater power output as the wavelength l and the waveheight δ increase. The present numerical results also show that the wavy leading‐edge shape is unfavorable for a wind turbine blade under the design conditions (e.g., at the rated wind speed). At these conditions, an early boundary‐layer separation as a result of the geometric disturbances of the leading‐edge tubercles will inevitably result in a visible shaft‐torque reduction in the wavy‐blade cases. Anyway, the wavy blades still tend to generate a more robust power output as a whole from 10 to 20 m s ?1 than the original NREL phase‐VI blade. Copyright © 2011 John Wiley & Sons, Ltd.
Keywords:wind turbine blade  aerodynamic characteristics  sinusoidal leading edge  local dynamics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号