首页 | 本学科首页   官方微博 | 高级检索  
     


Robust topology optimization under load position uncertainty
Authors:Dong Wang  Weifeng Gao
Affiliation:Department of Aeronautical Structural Engineering, Northwestern Polytechnical University, Xi'an, China
Abstract:The topology optimization problem of a continuum structure on the compliance minimization objective is investigated under consideration of the external load uncertainty in its application position with a nonprobabilistic approach. The load position is defined as the uncertain-but-bounded parameter and is represented by an interval variable with a nominal application point. The structural compliance due to the load position deviation is formulated with the quadratic Taylor series expansion. As a result, the objective gradient information to the topological variables can be evaluated efficiently in a quadratic expression. Based on the maximum design sensitivity value, which corresponds to the most sensitive compliance to the uncertain loading position, a single-level optimization approach is suggested by using a popular gradient-based optimality criteria method. The proposed optimization scheme is performed to gain the robust topology optimizations of three benchmark examples, and the final configuration designs are compared comprehensively with the conventional topology optimizations under the loading point fixation. It can be observed that the present method can provide remarkably different material layouts with auxiliary components to accommodate the load position disturbances. The numerical results of the representative examples also show that the structural performances of the robust topology optimizations appear less sensitive to the load position perturbations than the traditional designs.
Keywords:load position uncertainty  load transfer path  maximal compliance sensitivity value  robust topology optimization  uncertainty resistance
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号