首页 | 本学科首页   官方微博 | 高级检索  
     


Ranking importance of input parameters of neural networks
Authors:A H Sung
Affiliation:

Department of Computer Science, New Mexico Institute of Mining and Technology, Socorro, NM 87801, USA

Abstract:Artificial neural networks have been used for simulation, modeling, and control purposes in many engineering applications as an alternative to conventional expert systems. Although neural networks usually do not reach the level of performance exhibited by expert systems, they do enjoy a tremendous advantage of very low construction costs. This paper addresses the issue of identifying important input parameters in building a multilayer, backpropagation network for a typical class of engineering problems. These problems are characterized by having a large number of input variables of varying degrees of importance; and identifying the important variables is a common issue since elimination of the unimportant inputs leads to a simplification of the problem and often a more accurate modeling or solution. We compare three different methods for ranking input importance: sensitivity analysis, fuzzy curves, and change of MSE (mean square error); and analyze their effectiveness. Simulation results based on experiments with simple mathematical functions as well as a real engineering problem are reported. Based on the analysis and our experience in building neural networks, we also propose a general methodology for building backpropagation networks for typical engineering applications.
Keywords:Artificial neural networks  Importance ranking  Sensitivity analysis  Fuzzy curves  Change of MSE
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号