首页 | 本学科首页   官方微博 | 高级检索  
     


A systematic study of DRIE process for high aspect ratio microstructuring
Authors:Manish Kumar Hooda  Manoj Wadhwa  MM Nayak  AK Paul
Affiliation:a Semi-Conductor Laboratory, Industrial Area, Sector-72 Division: VMFD, Mohali, Punjab 160071, India
b KITM, Kurukshetra, Haryana, India
c Central Scientific Instrument Organization, Chandigarh, India
Abstract:Various MEMS devices like Accelerometers, Resonators, RF- Filters, Micropumps, Microvalves, Microdispensers and Microthrusters are produced by removing the bulk of the substrate materials. Fabrications of such Microsystems requires the ability to engineer precise three-dimensional structures in the silicon substrate. Fabrication of MEMS faces multiple technological challenges before it can become a commercially viable technology. One key fabrication process required is the deep silicon etching for forming high aspect ratio structures. There is an increasing interest in the use of dry plasma etching for this application because of its anisotropic etching behavior, high etch speed, good uniformity and profile control, high aspect ratio capabilities without having any undesired secondary effects i.e. RIE lags, Loading, microloading, loosing of anisotropic nature of etching as aspect ratio increases, micro-grass and even etch stalling. Developing a DRIE micro-machining process requires a thorough understanding of all plasma parameters, which can affect a silicon etching process and their use to suppress the secondary effects. In this paper our intention is to investigate the influence of etching gas flow, etching gas pressure, passivation gas pressure, ICP coil power, Platen power and etch and passivation time sequence on etch rate and side wall profile. Parameter ramping is a powerful technique used to achieve the requirements of high aspect ratio microstructures (HARMS) for MEMS applications by having high etch rate with good profile/CD control. The results presented here can be used to rationally vary processing parameters in order to meet the microstructural requirements for a particular application.
Keywords:Silicon etching  MEMS  DRIE  HARMS  micro-machining  Parameter ramping
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号