首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of gas flow on gain of 10.6 micron CO2laser amplifiers
Authors:Cheo   P.
Affiliation:Bell Telephone Laboratories, Inc., Whippany, NJ, USA;
Abstract:Small-signal gain of flowing gas CO2laser amplifiers at 10.6 microns has been optimized for media including pure CO2CO2: N2, CO2: He, CO2: CO, CO2: O2, CO2: N2: He, CO2: CO : He, and CO2: CO : N2. Optimum gain of all flowing gas systems studied increases monotonically with increasing gas flow rate. In the low CO2flow rate region, 10 < RCO2: < 50 cm3/min, gas flow enhances the gain most for systems containing N2. Results provide strong evidence that the rapid increase in gain with flow rate in CO2: N2mixtures is due to removal by convection of the dissociated product CO. For 50 < RCO2< 200 cm3/min, a slow linear increase in gain of all gas mixtures with increasing flow rate occurs and is attributed to the cooling of gas temprature by convection. A stronger dependence of gainGon amplifier boreD, viz.,G propto I/D, was obtained for flowing gas media relative to that previously observed for nonflowing gas mixtures which is consistent with the proposed mechanism of gas cooling by convection. Highest gain values obtained were 7.8 and 6.2 dB/m with the flowing gas mixtures CO2: N2: He and CO2: CO : He, respectively, in a 12 mm bore water-cooled amplifier tube. Similarities between CO2: N2and CO2: CO systems suggest that pumping of the CO2laser by resonant transfer from CO* (upsilon = 1) can be significant.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号