首页 | 本学科首页   官方微博 | 高级检索  
     


Photovoltaic measurements in single-nanowire silicon solar cells
Authors:Kelzenberg Michael D  Turner-Evans Daniel B  Kayes Brendan M  Filler Michael A  Putnam Morgan C  Lewis Nathan S  Atwater Harry A
Affiliation:California Institute of Technology, Pasadena, California 91125, USA.
Abstract:Single-nanowire solar cells were created by forming rectifying junctions in electrically contacted vapor-liquid-solid-grown Si nanowires. The nanowires had diameters in the range of 200 nm to 1.5 microm. Dark and light current-voltage measurements were made under simulated Air Mass 1.5 global illumination. Photovoltaic spectral response measurements were also performed. Scanning photocurrent microscopy indicated that the Si nanowire devices had minority carrier diffusion lengths of approximately 2 microm. Assuming bulk-dominated recombination, this value corresponds to a minimum carrier lifetime of approximately 15 ns, or assuming surface-dominated recombination, to a maximum surface recombination velocity of approximately 1350 cm s(-1). The methods described herein comprise a valuable platform for measuring the properties of semiconductor nanowires, and are expected to be instrumental when designing an efficient macroscopic solar cell based on arrays of such nanostructures.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号