Abstract: | Whenever the fractional temperature lift ΔT/Tc of a heat pump is 0.15, simple cycles with one-stage throttling exhibit unsatisfactory energy performance. The adoption of multi-stage throttling, both in non-regenerative and regenerative cycles, is the most direct way of improving the cycle coefficient of performance (COP). The performance of these complex cycles is found to be a function of the molecular complexity of the working fluid, the reduced evaporation temperature, the fractional temperature lift and the number of stages of throttling. Furthermore, complex cycles are shown to be equivalent to a combination of simple cycles and their performance may be directly inferred by this route. Such calculations show that for a given fractional temperature lift an optimum molecular complexity (between that of R12 and n-butane) exists. Fluids with simpler molecules exhibit excessive vapour superheating during compression, and those with more complex molecules have excessive throttling losses. Also, with complex cycles, regeneration should be applied only to the cycle at the lowest temperature in order to improve the cycle COP and to prevent condensation during compression. As a general trend, however, complex cycles suffer a significant loss in performance compared to optimized simple cycles due to the adverse area of the two-phase diagram in which they work. |