首页 | 本学科首页   官方微博 | 高级检索  
     

鲁棒局部保持投影的表情识别
引用本文:李睿凡,朱强生,郭燕慧,刘海涛. 鲁棒局部保持投影的表情识别[J]. 北京邮电大学学报, 2006, 29(Z2): 178-182
作者姓名:李睿凡  朱强生  郭燕慧  刘海涛
作者单位:1.北京邮电大学信息工程学院,北京 100876;2.中国民航大学 通信工程系,天津 300300
摘    要:针对局部保持投影的流形学习算法对于噪声与异常值的敏感性,提出了一种鲁棒的局部保持投影算法. 其基本出发点是首先对所有数据点进行评估,以获得它们可能成为异常值的信息,然后再将这种信息用于邻域选择与低维嵌套中. 采用鲁棒局部保持投影进行人脸的表示方法,对JAFFE表情数据库进行了实验,结果表明,该方法有效.

关 键 词:局部保持投影  鲁棒性  表情识别
文章编号:1007-5321(2006)增-0178-05
收稿时间:2006-10-10
修稿时间:2006-10-10

Robust Locality Preserving Projection for Facial Expression Recognition
LI Rui-fan,ZHU Qiang-sheng,GUO Yan-hui,LIU Hai-tao. Robust Locality Preserving Projection for Facial Expression Recognition[J]. Journal of Beijing University of Posts and Telecommunications, 2006, 29(Z2): 178-182
Authors:LI Rui-fan  ZHU Qiang-sheng  GUO Yan-hui  LIU Hai-tao
Affiliation:1. School of Information Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2. Department of Communications Engineering, Civil Aviation University of China, Tianjin 300300, China
Abstract:Aiming at the sensitivity of manifold learning, such as Locality preserving projection (LPP), to noises or outliers, a robust version of LPP, called Robust LPP (RLPP), was proposed. By this algorithm, all the data was firstly evaluated to obtain the possibility of data points as outliers. And then this information was used for neighborhood selection and low-dimensional embedding. The RLPP was used for the representation of facial images. The experiments on JAFFE database showed the effectiveness of this algorithm.
Keywords:locality preserving projection  robustness  facial expression recognition
本文献已被 万方数据 等数据库收录!
点击此处可从《北京邮电大学学报》浏览原始摘要信息
点击此处可从《北京邮电大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号