首页 | 本学科首页   官方微博 | 高级检索  
     


A Comparative NBTI Study of $hbox{HfO}_{2}$, $hbox{HfSiO}_{x}$, and SiON p-MOSFETs Using UF-OTF $I_{rm DLIN}$ Technique
Abstract: The time, temperature, and oxide-field dependence of negative-bias temperature instability is studied in $hbox{HfO}_{2}/hbox{TiN}$, $ hbox{HfSiO}_{x}/hbox{TiN}$, and SiON/poly-Si p-MOSFETs using ultrafast on-the-fly $I_{rm DLIN}$ technique capable of providing measured degradation from very short (approximately microseconds) to long stress time. Similar to rapid thermal nitrided oxide (RTNO) SiON, $hbox{HfO}_{2}$ devices show very high temperature-independent degradation at short (submilliseconds) stress time, not observed for plasma nitrided oxide (PNO) SiON and $hbox{HfSiO}_{x}$ devices. $hbox{HfSiO}_{x}$ shows lower overall degradation, higher long-time power-law exponent, field acceleration, and temperature activation as compared to $hbox{HfO}_{2}$, which are similar to the differences between PNO and RTNO SiON devices, respectively. The difference between $ hbox{HfSiO}_{x}$ and $hbox{HfO}_{2}$ can be attributed to differences in N density in the $hbox{SiO}_{2}$ IL of these devices.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号