首页 | 本学科首页   官方微博 | 高级检索  
     

小波变换在光谱特征提取方面的应用
引用本文:孙桂玲,张翠兰,方勇华,黄宏华. 小波变换在光谱特征提取方面的应用[J]. 量子电子学报, 2006, 23(1): 22-26
作者姓名:孙桂玲  张翠兰  方勇华  黄宏华
作者单位:中国科学院安徽光学精密机械研究所,安徽,合肥,230031
摘    要:人们在处理高光谱图像时一般要对一些典型地物进行光谱分析、特征波段的提取,以便提取出最大量的有效信息,剔除无用或冗余的信息,然后再进行分类识别.采用小波变换的分析方法,选用合适的小波进行分解,根据分解后的高频分量中包含的重要信息,利用局部相邻的正负极值点找出对应于原始光谱曲线上每个吸收带的左右边界;利用局部过零点,即可比较精确的提取出各个吸收带的中心波长.该方法比传统的光谱特征提取方法更简洁、有效,实验证明为一种比较理想的光谱特征提取方法.

关 键 词:信息处理  高光谱  小波变换  高频分量  局部模最大
文章编号:1007-5461(2006)01-0022-05
收稿时间:2004-11-18
修稿时间:2005-03-21

A method based on wavelet transform for spectral feature extraction
SUN Gui-ling,ZHANG Cui-lan,FANG Yong-hua,HUANG Hong-hua. A method based on wavelet transform for spectral feature extraction[J]. Chinese Journal of Quantum Electronics, 2006, 23(1): 22-26
Authors:SUN Gui-ling  ZHANG Cui-lan  FANG Yong-hua  HUANG Hong-hua
Abstract:The high spectral resolution of hyper-spectral data provides the ability for diagnostic identification of various materials. The purpose of spectral feature extraction is to extract substantial information from the original data input and filter out redundant information, then classification and identification can be processed. The author introduced a method based on wavelet decomposition for spectral feature extraction. Appropriate wavelet is applied to the pre-analyzing signals and make it decomposed, then the high-frequency component contains much important feature information. We can detect every absorption strips and their left and right boundaries according to the original signal by finding the local modulus maxima of high-frequency weight. The method is terser and more effective than other traditional methods. It proved that wavelet analysis is a more perfect method of spectral feature extraction.
Keywords:information processing   hyper-spectral remote sensing   wavelet transform   high-frequency constituent   local modulus maximum
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号