首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling of electron-hole scattering in semiconductor devices
Abstract:It is generally assumed in device modeling that the effects of electron-hole scattering can be fully accounted for by a suitable reduction in the electron and hole mobilities with injection level, without modifying the semiconductor device equations themselves. Physical considerations indicate that this is not the case, and that electron-hole collisions introduce a direct coupling between the electron and hole currents. This is determined from first principles, and the results of a Boltzmann calculation are described. The key result is that the impact of an electron-hole scattering event depends on the relative drift velocity between electrons and holes. In low injection, the effective minority-carrier diffusion mobility cannot be assumed to be identical to majority-carrier mobilities or to minority-carrier drift mobilities. In high injection, a reduction in the conductivity mobility does not imply a reduction in the ambipolar diffusion constant. Results for p-i-n diodes are given
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号