首页 | 本学科首页   官方微博 | 高级检索  
     


Domain Engineering in ReS2 by Coupling Strain during Electrochemical Exfoliation
Authors:Wei Yu  Zishen Wang  Xiaoxu Zhao  Junyong Wang  Tun Seng Herng  Teng Ma  Zhiyu Zhu  Jun Ding  Goki Eda  Stephen J. Pennycook  Yuan Ping Feng  Kian Ping Loh
Abstract:Chemical exfoliation has been used for the fast and large‐scale production of 2D nanosheets from graphene and transition metal dichalcogenides; however, it is rarely used for domain engineering of exfoliated nanosheets. Herein, it is found that the use of large sized molecular intercalants during electrochemical intercalation induce atomic row dislocation and parallel mirror twin boundaries (MTBs) on an otherwise pristine rhenium disulfide (ReS2) crystal, such that the exfoliated flakes possess a parallel, multi‐domain structure. These domains can be distinguished under a polarized microscope owing to the intrinsic in‐plane optical dichroic properties of ReS2, thereby affording a way to track the number of domains introduced versus the size of the molecular intercalant during electrochemical exfoliation. Ferromagnetism is detected on the intercalated sample using large sized molecular intercalants. Density function theory suggests that these may be due to the coupled effects of lattice strain and S vacancies in the MTBs.
Keywords:chemical exfoliation  domain engineering  ferromagnetism  mirror twin boundary  ReS2 monolayer
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号