首页 | 本学科首页   官方微博 | 高级检索  
     


Catalyst Design for Electrochemical Oxygen Reduction toward Hydrogen Peroxide
Authors:Kun Jiang  Jiajun Zhao  Haotian Wang
Abstract:Precise electrochemical synthesis under ambient conditions has provided emerging opportunities for renewable energy utilization. Among many promising systems, the production of hydrogen peroxide (H2O2) from the cathodic oxygen reduction reaction (ORR) has attracted considerable interest in past decades due to the increasing market demands and the vital role of ORR in the electrocatalysis field. This work describes recent advances in cathodic materials for H2O2 synthesis from 2e- ORR. By using Pt as a stereotype, the tuning knobs are overviewed, including the intrinsic binding strength of oxygenated species, the intermediate diffusion path and the isolation of Pt–Pt ensembles that enable 2e- ORR pathway from 4e- total reduction. This knowledge is successfully applied to other transition metal systems and leads to the discovery of more efficient alloy catalysts with balanced improvement on both activity and selectivity. In addition, mesostructure engineering and heteroatoms doping strategies on carbon‐based materials, which significantly boost the H2O2 production efficiency as compared to intact carbon sites, are also reviewed. Finally, future directions and challenges of transferring developed catalysts from lab scale tests to pilot plant operations are briefly outlooked.
Keywords:electrocatalysis  hydrogen peroxide  oxygen reduction reaction  platinum  single atom catalysts
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号