首页 | 本学科首页   官方微博 | 高级检索  
     


A Stable Conversion and Alloying Anode for Potassium‐Ion Batteries: A Combined Strategy of Encapsulation and Confinement
Authors:Shijian Wang  Pan Xiong  Xin Guo  Jinqiang Zhang  Xiaochun Gao  Fan Zhang  Xiao Tang  Peter H L Notten  Guoxiu Wang
Abstract:Potassium‐ion batteries based on conversion/alloying reactions have high potential applications in new‐generation large‐scale energy storage. However, their applications are hindered by inherent large‐volume variations and sluggish kinetics of the conversion/alloying‐type electrode materials during the repeated insertion and extraction of bulky K+ ions. Although some efforts have been focused on this issue, the reported potassium‐ion batteries still suffer from poor cycling lifespans. Here, a superior stable antimony selenide (Sb2Se3) anode is reported for high‐performance potassium‐ion batteries through a combined strategy of conductive encapsulation and 2D confinement. The Sb2Se3 nanorods are uniformly coated with a conductive N‐doped carbon layer and then confined between graphene nanosheets. The synergistic effects between conductive coating and confinement effectively buffer the large volumetric variation of the conversion/alloying anodes, which can maintain structural stability for superior cyclability. The as‐prepared anodes exhibit a high reversible specific capacity of ≈590 mA h g?1 and outstanding cycling stability over 350 cycles. In situ and ex situ characterizations reveal a high structural integration of the large‐volume‐change Sb2Se3 anodes during a reversible K storage mechanism of two‐step conversion and multistep alloying processes. This work can open up a new possibility for the design of stable conversion/alloying‐based anodes for high‐performance potassium‐ion batteries.
Keywords:antimony selenides  conductive encapsulations  conversion/alloying anodes  potassium‐ion batteries  2D confinements
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号