首页 | 本学科首页   官方微博 | 高级检索  
     


Anisotropic Phonon Response of Few‐Layer PdSe2 under Uniaxial Strain
Authors:Weijun Luo  Akinola D Oyedele  Yiyi Gu  Tianshu Li  Xingzhi Wang  Amanda V Haglund  David Mandrus  Alexander A Puretzky  Kai Xiao  Liangbo Liang  Xi Ling
Abstract:PdSe2, an emerging 2D material with a novel anisotropic puckered pentagonal structure, has attracted growing interest due to its layer‐dependent electronic bandgap, high carrier mobility, and good air stability. Herein, a detailed Raman spectroscopic study of few‐layer PdSe2 (two to five layers) under the in‐plane uniaxial tensile strain up to 3.33% is performed. Two of the prominent PdSe2 Raman peaks are influenced differently depending on the direction of strain application. The A g 1 mode redshifts more than the A g 3 mode when the strain is applied along the a‐axis of the crystal, while the A g 3 mode redshifts more than the A g 1 mode when the strain is applied along the b‐axis. Such an anisotropic phonon response to strain indicates directionally dependent mechanical and thermal properties of PdSe2 and also allows the identification of the crystal axes. The results are further supported using first‐principles density‐functional theory. Interestingly, the near‐zero Poisson’s ratios for few‐layer PdSe2 are found, suggesting that the uniaxial tensile strain can easily be applied to few‐layer PdSe2 without significantly altering their dimensions at the perpendicular directions, which is a major contributing factor to the observed distinct phonon behavior. The findings pave the way for further development of 2D PdSe2‐based flexible electronics.
Keywords:PdSe2  Raman spectroscopy  strain engineering  stretchable  transition metal dichalcogenides
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号