Abstract: | SnSx (x = 1, 2) compounds are composed of earth‐abundant elements and are nontoxic and low‐cost materials that have received increasing attention as energy materials over the past decades, owing to their huge potential in batteries. Generally, SnSx materials have excellent chemical stability and high theoretical capacity and reversibility due to their unique 2D‐layered structure and semiconductor properties. As a promising matrix material for storing different alkali metal ions through alloying/dealloying reactions, SnSx compounds have broad electrochemical prospects in batteries. Herein, the structural properties of SnSx materials and their advantages as electrode materials are discussed. Furthermore, detailed accounts of various synthesis methods and applications of SnSx materials in lithium‐ion batteries, sodium‐ion batteries, and other new rechargeable batteries are emphasized. Ultimately, the challenges and opportunities for future research on SnSx compounds are discussed based on the available academic knowledge, including recent scientific advances. |