首页 | 本学科首页   官方微博 | 高级检索  
     


Fast Reversible Phase Change Silicon for Visible Active Photonics
Authors:Letian Wang  Matthew Eliceiri  Yang Deng  Yoonsoo Rho  Wan Shou  Heng Pan  Jie Yao  Costas P Grigoropoulos
Abstract:Both amorphous and crystalline silicon are ubiquitous materials for electronics, photonics, and microelectromechanical systems. On‐demand control of Si crystallinity is crucial for device manufacturing and to overcome the limitations of current phase‐change materials (PCM) in active photonics. Fast reversible phase transformation in silicon, however, has never been accomplished due to the notorious challenge of amorphization. It is demonstrated that nanostructured Si can function as a PCM, since it can be reversibly crystallized and amorphized under nanosecond laser irradiation with different pulse energies. Reflection probing on a single nanodisk's phase transformations confirms the distinct mechanisms for crystallization and amorphization. The experimental results show that the relaxation time of undercooled silicon at 950 K is 10 ns. The phase change provides a 20% nonvolatile reflectivity modulation within 100 ns and can be repeated over 400 times. It is shown that such transformations are free of deformation upon solidification. Based on the switchable photonic properties in the visible spectrum, proof‐of‐concept experiments of dielectric color displays and dynamic wavefront control are shown. Therefore, nanostructured silicon is proposed as a chemically stable, deformation free, and complementary metal–oxide‐semiconductor compatible (CMOS) PCM for active photonics at visible wavelengths.
Keywords:lasers  phase transformation  photonics  silicon
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号