首页 | 本学科首页   官方微博 | 高级检索  
     


Stretchable and Transparent Conductive PEDOT:PSS‐Based Electrodes for Organic Photovoltaics and Strain Sensors Applications
Authors:Emilie Dauzon  Yuanbao Lin  Hendrik Faber  Emre Yengel  Xavier Sallenave  Cedric Plesse  Fabrice Goubard  Aram Amassian  Thomas D Anthopoulos
Abstract:The development of transparent, conducting, and stretchable poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)‐based electrodes using a combination of a polyethylene oxide (PEO) polymer network and the surfactant Zonyl is reported. The latter improves the ductility of PEDOT:PSS and enables its deposition on hydrophobic surfaces such as polydimethylsiloxane (PDMS) elastomers, while the presence of a 3D matrix offers high electrical conductivity, elasticity, and mechanical recoverability. The resulting electrode exhibits attractive properties such as high electrical conductivity of up to 1230 S cm?1 while maintaining high transparency of 95% at 550 nm. The potential of the electrode technology is demonstrated in indium‐tin‐oxide (ITO)‐free solar cells using the PBDB‐T‐2F:IT‐4F blend with a power conversion efficiency of 12.5%. The impact of repeated stretch‐and‐release cycles on the electrical resistance is also examined in the effort to evaluate the properties of the electrodes. The interpenetrated morphology of the PEDOT:PSS and polyethylene oxide network is found to exhibit beneficial synergetic effects resulting in excellent mechanical stretchability and high electrical conductivity. By carefully tuning the amount of additives, the ability to detect small changes in electrical resistance as a function of mechanical deformation is demonstrated, which enables the demonstration of stretchable and resilient on‐skin strain sensors capable of detecting small motions of the finger.
Keywords:organic solar cells  PEDOT:PSS  stretchable electrodes  transparent electrodes  wearable sensors
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号