首页 | 本学科首页   官方微博 | 高级检索  
     

应用预测最小二乘准则的AR模型判阶方法
引用本文:石星, 戴庆芬, 李乐民. 应用预测最小二乘准则的AR模型判阶方法[J]. 电子与信息学报, 1997, 19(6): 762-767.
作者姓名:石星  戴庆芬  李乐民
作者单位:电子科技大学信息研究所,电子部十所,电子科技大学信息研究所 成都 610054,成都 610039,成都 610054
摘    要:本文通过多种AR模型的判阶准则的比较提出了应用最小二乘预测误差的滑窗预测最小二乘(Sliding Window Predictive Least Squares, SWPLS)判阶准则.采用这种准则的主要优点除了准确的判阶性能外,对于时变AR模型具有良好的跟踪特性,同时算法容易实现在线实时处理.文中主要对时变模型参数和时变模型阶数的多种情况进行了判阶模拟,验证了文中提出的滑窗最小二乘预测判阶准则的有效性.

关 键 词:模型判阶   滑窗数据   格形结构
收稿时间:1996-03-20
修稿时间:1997-01-06

STUDY OF AR MODEL ORDER SELECTION APPLYING CRITERION OF PREDICTIVE LEAST SQUARES
Shi Xing, Dai Qingfen, Li Lemin. STUDY OF AR MODEL ORDER SELECTION APPLYING CRITERION OF PREDICTIVE LEAST SQUARES[J]. Journal of Electronics & Information Technology, 1997, 19(6): 762-767.
Authors:Shi Xing  Dai Qingfen  Li Lemin
Affiliation:University of Electronic Science and Technology of China Chengdu 610054;10th Institute of Electronic Industry Ministry Chengdu 610039
Abstract:A criterion called Sliding Window Predictive Least-Squares (SWPLS) order selection criterion is presented in this paper by comparison of several typical criteria of AR model order selection. In addition to property of fine order selection the criterion has advantage of good tracking property and can be easily implemented on-line in real time. The effectiveness of SWPLS criterion is verified by simulation experiment of order selection for models of time-varying parameter and time-varying order.
Keywords:Order selection of model   Sliding window data   Lattice structure
本文献已被 CNKI 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号