首页 | 本学科首页   官方微博 | 高级检索  
     


Diamond and graphite crystallization from C–O–H fluids under high pressure and high temperature conditions
Authors:A G Sokol  Yu N Pal'yanov  G A Pal'yanova  A F Khokhryakov  Yu M Borzdov
Affiliation:

Institute of Mineralogy and Petrography, Russian Academy of Sciences, Koptyuga pr., 3, Novosibirsk, 630090, Russia

Abstract:Crystallization of diamond was studied in the CO2–C, CO2–H2O–C, H2O–C, and CH4–H2–C systems at 5.7 GPa and 1200–1420°C. Thermodynamic calculations show generation of CO2, CO2–H2O, H2O and CH4–H2 fluids in experiments with graphite and silver oxalate (Ag2C2O4), oxalic acid dihydrate (H2C2O4·2H2O), water (H2O), and anthracene (C14H10), respectively. Diamond nucleation and growth has been found in the CO2–C, CO2–H2O–C, and H2O–C systems at 1300–1420°C. At a temperature as low as 1200°C for 136 h there was spontaneous crystallization of diamond in the CO2–H2O–C system. For the CH4–H2–C system, at 1300–1420°C no diamond synthesis has been established, only insignificant growth on seeds was observed. Diamond octahedra form from the C–O–H fluids at all temperature ranges under investigation. Diamond formation from the fluids at 5.7 GPa and 1200–1420°C was accompanied with the active recrystallization of metastable graphite.
Keywords:HP-HT experiment  Diamond crystallization  C–O–H system  Fluid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号